fixing tests for unpivot and adding support for lazy dataframes

This commit is contained in:
Jack Wright 2024-06-27 15:48:45 -07:00
parent f1e5bcd2c2
commit 522e2cc141
2 changed files with 177 additions and 78 deletions

View File

@ -3,9 +3,12 @@ use nu_protocol::{
Category, Example, LabeledError, PipelineData, ShellError, Signature, Span, Spanned,
SyntaxShape, Type, Value,
};
use polars::frame::explode::UnpivotArgs;
use crate::{
dataframe::values::utils::convert_columns_string, values::CustomValueSupport, PolarsPlugin,
dataframe::values::utils::convert_columns_string,
values::{CustomValueSupport, NuLazyFrame, PolarsPluginObject},
PolarsPlugin,
};
use super::super::values::{Column, NuDataFrame};
@ -54,65 +57,127 @@ impl PluginCommand for UnpivotDF {
Type::Custom("dataframe".into()),
Type::Custom("dataframe".into()),
)
.switch(
"streamable",
"Whether or not to use the polars streaming engine. Only valid for lazy dataframes",
Some('s'),
)
.category(Category::Custom("dataframe".into()))
}
fn examples(&self) -> Vec<Example> {
vec![Example {
description: "unpivot dataframe",
example:
"[[a b c d]; [x 1 4 a] [y 2 5 b] [z 3 6 c]] | polars into-df | polars unpivot -c [b c] -v [a d]",
result: Some(
NuDataFrame::try_from_columns(vec![
Column::new(
"b".to_string(),
vec![
Value::test_int(1),
Value::test_int(2),
Value::test_int(3),
Value::test_int(1),
Value::test_int(2),
Value::test_int(3),
],
),
Column::new(
"c".to_string(),
vec![
Value::test_int(4),
Value::test_int(5),
Value::test_int(6),
Value::test_int(4),
Value::test_int(5),
Value::test_int(6),
],
),
Column::new(
"variable".to_string(),
vec![
Value::test_string("a"),
Value::test_string("a"),
Value::test_string("a"),
Value::test_string("d"),
Value::test_string("d"),
Value::test_string("d"),
],
),
Column::new(
"value".to_string(),
vec![
Value::test_string("x"),
Value::test_string("y"),
Value::test_string("z"),
Value::test_string("a"),
Value::test_string("b"),
Value::test_string("c"),
],
),
], None)
.expect("simple df for test should not fail")
.into_value(Span::test_data()),
),
}]
vec![
Example {
description: "unpivot on an eager dataframe",
example:
"[[a b c d]; [x 1 4 a] [y 2 5 b] [z 3 6 c]] | polars into-df | polars unpivot -c [b c] -v [a d]",
result: Some(
NuDataFrame::try_from_columns(vec![
Column::new(
"b".to_string(),
vec![
Value::test_int(1),
Value::test_int(2),
Value::test_int(3),
Value::test_int(1),
Value::test_int(2),
Value::test_int(3),
],
),
Column::new(
"c".to_string(),
vec![
Value::test_int(4),
Value::test_int(5),
Value::test_int(6),
Value::test_int(4),
Value::test_int(5),
Value::test_int(6),
],
),
Column::new(
"variable".to_string(),
vec![
Value::test_string("a"),
Value::test_string("a"),
Value::test_string("a"),
Value::test_string("d"),
Value::test_string("d"),
Value::test_string("d"),
],
),
Column::new(
"value".to_string(),
vec![
Value::test_string("x"),
Value::test_string("y"),
Value::test_string("z"),
Value::test_string("a"),
Value::test_string("b"),
Value::test_string("c"),
],
),
], None)
.expect("simple df for test should not fail")
.into_value(Span::test_data()),
),
},
Example {
description: "unpivot on a lazy dataframe",
example:
"[[a b c d]; [x 1 4 a] [y 2 5 b] [z 3 6 c]] | polars into-lazy | polars unpivot -c [b c] -v [a d] | polars collect",
result: Some(
NuDataFrame::try_from_columns(vec![
Column::new(
"b".to_string(),
vec![
Value::test_int(1),
Value::test_int(2),
Value::test_int(3),
Value::test_int(1),
Value::test_int(2),
Value::test_int(3),
],
),
Column::new(
"c".to_string(),
vec![
Value::test_int(4),
Value::test_int(5),
Value::test_int(6),
Value::test_int(4),
Value::test_int(5),
Value::test_int(6),
],
),
Column::new(
"variable".to_string(),
vec![
Value::test_string("a"),
Value::test_string("a"),
Value::test_string("a"),
Value::test_string("d"),
Value::test_string("d"),
Value::test_string("d"),
],
),
Column::new(
"value".to_string(),
vec![
Value::test_string("x"),
Value::test_string("y"),
Value::test_string("z"),
Value::test_string("a"),
Value::test_string("b"),
Value::test_string("c"),
],
),
], None)
.expect("simple df for test should not fail")
.into_value(Span::test_data()),
),
}
]
}
fn run(
@ -122,15 +187,26 @@ impl PluginCommand for UnpivotDF {
call: &EvaluatedCall,
input: PipelineData,
) -> Result<PipelineData, LabeledError> {
command(plugin, engine, call, input).map_err(LabeledError::from)
match PolarsPluginObject::try_from_pipeline(plugin, input, call.head)? {
PolarsPluginObject::NuDataFrame(df) => command_eager(plugin, engine, call, df),
PolarsPluginObject::NuLazyFrame(lazy) => command_lazy(plugin, engine, call, lazy),
_ => Err(ShellError::GenericError {
error: "Must be a dataframe or lazy dataframe".into(),
msg: "".into(),
span: Some(call.head),
help: None,
inner: vec![],
}),
}
.map_err(LabeledError::from)
}
}
fn command(
fn command_eager(
plugin: &PolarsPlugin,
engine: &EngineInterface,
call: &EvaluatedCall,
input: PipelineData,
df: NuDataFrame,
) -> Result<PipelineData, ShellError> {
let id_col: Vec<Value> = call.get_flag("columns")?.expect("required value");
let val_col: Vec<Value> = call.get_flag("values")?.expect("required value");
@ -141,14 +217,12 @@ fn command(
let (id_col_string, id_col_span) = convert_columns_string(id_col, call.head)?;
let (val_col_string, val_col_span) = convert_columns_string(val_col, call.head)?;
let df = NuDataFrame::try_from_pipeline_coerce(plugin, input, call.head)?;
check_column_datatypes(df.as_ref(), &id_col_string, id_col_span)?;
check_column_datatypes(df.as_ref(), &val_col_string, val_col_span)?;
let mut res = df
.as_ref()
.unpivot(&id_col_string, &val_col_string)
.unpivot(&val_col_string, &id_col_string)
.map_err(|e| ShellError::GenericError {
error: "Error calculating unpivot".into(),
msg: e.to_string(),
@ -183,6 +257,37 @@ fn command(
res.to_pipeline_data(plugin, engine, call.head)
}
fn command_lazy(
plugin: &PolarsPlugin,
engine: &EngineInterface,
call: &EvaluatedCall,
df: NuLazyFrame,
) -> Result<PipelineData, ShellError> {
let id_col: Vec<Value> = call.get_flag("columns")?.expect("required value");
let val_col: Vec<Value> = call.get_flag("values")?.expect("required value");
let (id_col_string, _id_col_span) = convert_columns_string(id_col, call.head)?;
let (val_col_string, _val_col_span) = convert_columns_string(val_col, call.head)?;
let value_name: Option<String> = call.get_flag("value-name")?;
let variable_name: Option<String> = call.get_flag("variable-name")?;
let streamable = call.has_flag("streamable")?;
let unpivot_args = UnpivotArgs {
on: val_col_string.iter().map(Into::into).collect(),
index: id_col_string.iter().map(Into::into).collect(),
value_name: value_name.map(Into::into),
variable_name: variable_name.map(Into::into),
streamable,
};
let polars_df = df.to_polars().unpivot(unpivot_args);
let res = NuLazyFrame::new(false, polars_df);
res.to_pipeline_data(plugin, engine, call.head)
}
fn check_column_datatypes<T: AsRef<str>>(
df: &polars::prelude::DataFrame,
cols: &[T],

View File

@ -78,22 +78,16 @@ impl NuLazyFrame {
}
pub fn schema(&mut self) -> Result<NuSchema, ShellError> {
let internal_schema = Arc::get_mut(&mut self.lazy)
.ok_or(ShellError::GenericError {
error: "Error getting schema from lazy frame".into(),
msg: "LazyFrame is not mutable".into(),
span: None,
help: None,
inner: vec![],
})?
.schema()
.map_err(|e| ShellError::GenericError {
error: "Error getting schema from lazy frame".into(),
msg: e.to_string(),
span: None,
help: None,
inner: vec![],
})?;
let internal_schema =
Arc::make_mut(&mut self.lazy)
.schema()
.map_err(|e| ShellError::GenericError {
error: "Error getting schema from lazy frame".into(),
msg: e.to_string(),
span: None,
help: None,
inner: vec![],
})?;
Ok(internal_schema.into())
}