use super::super::values::{Column, NuDataFrame}; use nu_protocol::{ ast::Call, engine::{Command, EngineState, Stack}, Category, Example, PipelineData, ShellError, Signature, Span, Type, Value, }; use polars::prelude::SeriesMethods; #[derive(Clone)] pub struct ValueCount; impl Command for ValueCount { fn name(&self) -> &str { "dfr value-counts" } fn usage(&self) -> &str { "Returns a dataframe with the counts for unique values in series." } fn signature(&self) -> Signature { Signature::build(self.name()) .input_output_type( Type::Custom("dataframe".into()), Type::Custom("dataframe".into()), ) .category(Category::Custom("dataframe".into())) } fn examples(&self) -> Vec { vec![Example { description: "Calculates value counts", example: "[5 5 5 5 6 6] | dfr into-df | dfr value-counts", result: Some( NuDataFrame::try_from_columns( vec![ Column::new( "0".to_string(), vec![Value::test_int(5), Value::test_int(6)], ), Column::new( "count".to_string(), vec![Value::test_int(4), Value::test_int(2)], ), ], None, ) .expect("simple df for test should not fail") .into_value(Span::test_data()), ), }] } fn run( &self, engine_state: &EngineState, stack: &mut Stack, call: &Call, input: PipelineData, ) -> Result { command(engine_state, stack, call, input) } } fn command( _engine_state: &EngineState, _stack: &mut Stack, call: &Call, input: PipelineData, ) -> Result { let df = NuDataFrame::try_from_pipeline(input, call.head)?; let series = df.as_series(call.head)?; let res = series .value_counts(false, false) .map_err(|e| ShellError::GenericError { error: "Error calculating value counts values".into(), msg: e.to_string(), span: Some(call.head), help: Some("The str-slice command can only be used with string columns".into()), inner: vec![], })?; Ok(PipelineData::Value( NuDataFrame::dataframe_into_value(res, call.head), None, )) } #[cfg(test)] mod test { use super::super::super::test_dataframe::test_dataframe; use super::*; #[test] fn test_examples() { test_dataframe(vec![Box::new(ValueCount {})]) } }