There are many use cases. Here we introduce the following: - The rows can be rolled `... | roll` (up) or `... | roll down` - Columns can be rolled too (the default is on the `left`, you can pass `... | roll column --opposite` to roll in the other direction) - You can `roll` the cells of a table and keeping the header names in the same order (`... | roll column --cells-only`) - Above examples can also be passed (Ex. `... | roll down 3`) a number to tell how many places to roll. Basic working example with rolling columns: ``` > echo '00000100' | split chars | each { str to-int } | rotate counter-clockwise _ | reject _ | rename bit1 bit2 bit3 bit4 bit5 bit6 bit7 bit8 ───┬──────┬──────┬──────┬──────┬──────┬──────┬──────┬────── # │ bit1 │ bit2 │ bit3 │ bit4 │ bit5 │ bit6 │ bit7 │ bit8 ───┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼────── 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 1 │ 0 │ 0 ───┴──────┴──────┴──────┴──────┴──────┴──────┴──────┴────── ``` We want to "shift" three bits to the left of the bitstring (four in decimal), let's try it: ``` > echo '00000100' | split chars | each { str to-int } | rotate counter-clockwise _ | reject _ | rename bit1 bit2 bit3 bit4 bit5 bit6 bit7 bit8 | roll column 3 ───┬──────┬──────┬──────┬──────┬──────┬──────┬──────┬────── # │ bit4 │ bit5 │ bit6 │ bit7 │ bit8 │ bit1 │ bit2 │ bit3 ───┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼────── 0 │ 0 │ 0 │ 1 │ 0 │ 0 │ 0 │ 0 │ 0 ───┴──────┴──────┴──────┴──────┴──────┴──────┴──────┴────── ``` The tables was rolled correctly (32 in decimal, for above bitstring). However, the *last three header names* look confusing. We can roll the cell contents only to fix it. ``` > echo '00000100' | split chars | each { str to-int } | rotate counter-clockwise _ | reject _ | rename bit1 bit2 bit3 bit4 bit5 bit6 bit7 bit8 | roll column 3 --cells-only ───┬──────┬──────┬──────┬──────┬──────┬──────┬──────┬────── # │ bit1 │ bit2 │ bit3 │ bit4 │ bit5 │ bit6 │ bit7 │ bit8 ───┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼────── 0 │ 0 │ 0 │ 1 │ 0 │ 0 │ 0 │ 0 │ 0 ───┴──────┴──────┴──────┴──────┴──────┴──────┴──────┴────── ``` There we go. Let's compute it's decimal value now (should be 32) ``` > echo '00000100' | split chars | each { str to-int } | rotate counter-clockwise _ | reject _ | roll column 3 --cells-only | pivot bit --ignore-titles | get bit | reverse | each --numbered { = $it.item * (2 ** $it.index) } | math sum 32 ```
43 lines
894 B
Rust
43 lines
894 B
Rust
mod column;
|
|
mod command;
|
|
mod up;
|
|
|
|
pub use column::SubCommand as RollColumn;
|
|
pub use command::Command as Roll;
|
|
pub use up::SubCommand as RollUp;
|
|
|
|
mod support {
|
|
|
|
pub enum Direction {
|
|
Left,
|
|
Right,
|
|
Down,
|
|
Up,
|
|
}
|
|
|
|
pub fn rotate<T: Clone>(
|
|
mut collection: Vec<T>,
|
|
n: &Option<nu_source::Tagged<u64>>,
|
|
direction: Direction,
|
|
) -> Option<Vec<T>> {
|
|
if collection.is_empty() {
|
|
return None;
|
|
}
|
|
|
|
let values = collection.as_mut_slice();
|
|
|
|
let rotations = if let Some(n) = n {
|
|
n.item as usize % values.len()
|
|
} else {
|
|
1
|
|
};
|
|
|
|
match direction {
|
|
Direction::Up | Direction::Right => values.rotate_left(rotations),
|
|
Direction::Down | Direction::Left => values.rotate_right(rotations),
|
|
}
|
|
|
|
Some(values.to_vec())
|
|
}
|
|
}
|