nushell/crates/nu-protocol/src/dataframe/nu_dataframe.rs
2021-11-16 12:01:02 +13:00

402 lines
12 KiB
Rust

use indexmap::IndexMap;
use std::cmp::Ordering;
use std::fmt::Display;
use std::hash::{Hash, Hasher};
use nu_errors::ShellError;
use nu_source::{Span, Tag};
use polars::prelude::{DataFrame, DataType, PolarsObject, Series};
use serde::{Deserialize, Serialize};
use super::conversion::{
add_separator, create_column, from_parsed_columns, insert_row, insert_table, insert_value,
Column, ColumnMap,
};
use crate::{Dictionary, Primitive, ShellTypeName, UntaggedValue, Value};
impl Display for Value {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.type_name())
}
}
impl Default for Value {
fn default() -> Self {
Self {
value: UntaggedValue::Primitive(Primitive::Nothing),
tag: Tag::default(),
}
}
}
impl PolarsObject for Value {
fn type_name() -> &'static str {
"object"
}
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct NuDataFrame {
dataframe: DataFrame,
}
// Dataframes are considered equal if they have the same shape, column name
// and values
impl PartialEq for NuDataFrame {
fn eq(&self, other: &Self) -> bool {
if self.as_ref().width() == 0 {
// checking for empty dataframe
return false;
}
if self.as_ref().get_column_names() != other.as_ref().get_column_names() {
// checking both dataframes share the same names
return false;
}
if self.as_ref().height() != other.as_ref().height() {
// checking both dataframes have the same row size
return false;
}
// sorting dataframe by the first column
let column_names = self.as_ref().get_column_names();
let first_col = column_names
.get(0)
.expect("already checked that dataframe is different than 0");
// if unable to sort, then unable to compare
let lhs = match self.as_ref().sort(*first_col, false) {
Ok(df) => df,
Err(_) => return false,
};
let rhs = match other.as_ref().sort(*first_col, false) {
Ok(df) => df,
Err(_) => return false,
};
for name in self.as_ref().get_column_names() {
let self_series = lhs.column(name).expect("name from dataframe names");
let other_series = rhs
.column(name)
.expect("already checked that name in other");
let self_series = match self_series.dtype() {
// Casting needed to compare other numeric types with nushell numeric type.
// In nushell we only have i64 integer numeric types and any array created
// with nushell untagged primitives will be of type i64
DataType::UInt32 => match self_series.cast(&DataType::Int64) {
Ok(series) => series,
Err(_) => return false,
},
_ => self_series.clone(),
};
if !self_series.series_equal(other_series) {
return false;
}
}
true
}
}
impl Eq for NuDataFrame {}
impl PartialOrd for NuDataFrame {
fn partial_cmp(&self, _: &Self) -> Option<Ordering> {
Some(Ordering::Equal)
}
}
impl Ord for NuDataFrame {
fn cmp(&self, _: &Self) -> Ordering {
Ordering::Equal
}
}
impl Hash for NuDataFrame {
fn hash<H: Hasher>(&self, _: &mut H) {}
}
impl AsRef<DataFrame> for NuDataFrame {
fn as_ref(&self) -> &polars::prelude::DataFrame {
&self.dataframe
}
}
impl AsMut<DataFrame> for NuDataFrame {
fn as_mut(&mut self) -> &mut polars::prelude::DataFrame {
&mut self.dataframe
}
}
impl NuDataFrame {
pub fn new(dataframe: polars::prelude::DataFrame) -> Self {
NuDataFrame { dataframe }
}
pub fn try_from_stream<T>(input: &mut T, span: &Span) -> Result<(Self, Tag), ShellError>
where
T: Iterator<Item = Value>,
{
input
.next()
.and_then(|value| match value.value {
UntaggedValue::DataFrame(df) => Some((df, value.tag)),
_ => None,
})
.ok_or_else(|| {
ShellError::labeled_error(
"No dataframe in stream",
"no dataframe found in input stream",
span,
)
})
}
pub fn try_from_iter<T>(iter: T, tag: &Tag) -> Result<Self, ShellError>
where
T: Iterator<Item = Value>,
{
// Dictionary to store the columnar data extracted from
// the input. During the iteration we check if the values
// have different type
let mut column_values: ColumnMap = IndexMap::new();
for value in iter {
match value.value {
UntaggedValue::Row(dictionary) => insert_row(&mut column_values, dictionary)?,
UntaggedValue::Table(table) => insert_table(&mut column_values, table)?,
UntaggedValue::Primitive(Primitive::Int(_))
| UntaggedValue::Primitive(Primitive::Decimal(_))
| UntaggedValue::Primitive(Primitive::String(_))
| UntaggedValue::Primitive(Primitive::Boolean(_))
| UntaggedValue::Primitive(Primitive::Date(_))
| UntaggedValue::DataFrame(_) => {
let key = "0".to_string();
insert_value(value, key, &mut column_values)?
}
_ => {
return Err(ShellError::labeled_error_with_secondary(
"Format not supported",
"Value not supported for conversion",
&value.tag,
"Perhaps you want to use a List, a List of Tables or a Dictionary",
&value.tag,
));
}
}
}
from_parsed_columns(column_values, &tag.span)
}
pub fn try_from_series(columns: Vec<Series>, span: &Span) -> Result<Self, ShellError> {
let dataframe = DataFrame::new(columns).map_err(|e| {
ShellError::labeled_error(
"DataFrame Creation",
format!("Unable to create DataFrame: {}", e),
span,
)
})?;
Ok(Self { dataframe })
}
pub fn try_from_columns(columns: Vec<Column>, span: &Span) -> Result<Self, ShellError> {
let mut column_values: ColumnMap = IndexMap::new();
for column in columns {
let name = column.name().to_string();
for value in column {
insert_value(value, name.clone(), &mut column_values)?;
}
}
from_parsed_columns(column_values, span)
}
pub fn into_value(self, tag: Tag) -> Value {
Value {
value: Self::into_untagged(self),
tag,
}
}
pub fn into_untagged(self) -> UntaggedValue {
UntaggedValue::DataFrame(self)
}
pub fn dataframe_to_value(df: DataFrame, tag: Tag) -> Value {
Value {
value: Self::dataframe_to_untagged(df),
tag,
}
}
pub fn dataframe_to_untagged(df: DataFrame) -> UntaggedValue {
UntaggedValue::DataFrame(Self::new(df))
}
pub fn series_to_untagged(series: Series, span: &Span) -> UntaggedValue {
match DataFrame::new(vec![series]) {
Ok(dataframe) => UntaggedValue::DataFrame(Self { dataframe }),
Err(e) => UntaggedValue::Error(ShellError::labeled_error(
"DataFrame Creation",
format!("Unable to create DataFrame: {}", e),
span,
)),
}
}
pub fn column(&self, column: &str, tag: &Tag) -> Result<Self, ShellError> {
let s = self
.as_ref()
.column(column)
.map_err(|e| ShellError::labeled_error("Column not found", e.to_string(), tag.span))?;
let dataframe = DataFrame::new(vec![s.clone()])
.map_err(|e| ShellError::labeled_error("DataFrame error", e.to_string(), tag.span))?;
Ok(Self { dataframe })
}
pub fn is_series(&self) -> bool {
self.as_ref().width() == 1
}
pub fn as_series(&self, span: &Span) -> Result<Series, ShellError> {
if !self.is_series() {
return Err(ShellError::labeled_error_with_secondary(
"Not a Series",
"DataFrame cannot be used as Series",
span,
"Note that a Series is a DataFrame with one column",
span,
));
}
let series = self
.as_ref()
.get_columns()
.get(0)
.expect("We have already checked that the width is 1");
Ok(series.clone())
}
pub fn get_value(&self, row: usize, span: Span) -> Result<Value, ShellError> {
let series = self.as_series(&Span::default())?;
let column = create_column(&series, row, row + 1)?;
if column.len() == 0 {
Err(ShellError::labeled_error_with_secondary(
"Not a valid row",
format!("No value found for index {}", row),
span,
format!("Note that the column size is {}", series.len()),
span,
))
} else {
let value = column
.into_iter()
.next()
.expect("already checked there is a value");
Ok(value)
}
}
// Print is made out a head and if the dataframe is too large, then a tail
pub fn print(&self) -> Result<Vec<Value>, ShellError> {
let df = &self.as_ref();
let size: usize = 20;
if df.height() > size {
let sample_size = size / 2;
let mut values = self.head(Some(sample_size))?;
add_separator(&mut values, df);
let remaining = df.height() - sample_size;
let tail_size = remaining.min(sample_size);
let mut tail_values = self.tail(Some(tail_size))?;
values.append(&mut tail_values);
Ok(values)
} else {
Ok(self.head(Some(size))?)
}
}
pub fn head(&self, rows: Option<usize>) -> Result<Vec<Value>, ShellError> {
let to_row = rows.unwrap_or(5);
let values = self.to_rows(0, to_row)?;
Ok(values)
}
pub fn tail(&self, rows: Option<usize>) -> Result<Vec<Value>, ShellError> {
let df = &self.as_ref();
let to_row = df.height();
let size = rows.unwrap_or(5);
let from_row = to_row.saturating_sub(size);
let values = self.to_rows(from_row, to_row)?;
Ok(values)
}
pub fn to_rows(&self, from_row: usize, to_row: usize) -> Result<Vec<Value>, ShellError> {
let df = self.as_ref();
let upper_row = to_row.min(df.height());
let mut size: usize = 0;
let columns = self
.as_ref()
.get_columns()
.iter()
.map(|col| match create_column(col, from_row, upper_row) {
Ok(col) => {
size = col.len();
Ok(col)
}
Err(e) => Err(e),
})
.collect::<Result<Vec<Column>, ShellError>>()?;
let mut iterators = columns
.into_iter()
.map(|col| (col.name().to_string(), col.into_iter()))
.collect::<Vec<(String, std::vec::IntoIter<Value>)>>();
let values = (0..size)
.into_iter()
.map(|i| {
let mut dictionary_row = Dictionary::default();
for (name, col) in &mut iterators {
let dict_val = match col.next() {
Some(v) => v,
None => {
println!("index: {}", i);
Value {
value: UntaggedValue::Primitive(Primitive::Nothing),
tag: Tag::default(),
}
}
};
dictionary_row.insert(name.clone(), dict_val);
}
Value {
value: UntaggedValue::Row(dictionary_row),
tag: Tag::unknown(),
}
})
.collect::<Vec<Value>>();
Ok(values)
}
}