200 lines
6.0 KiB
Rust
200 lines
6.0 KiB
Rust
use nu_plugin::{EngineInterface, EvaluatedCall, PluginCommand};
|
|
use nu_protocol::{
|
|
Category, Example, LabeledError, PipelineData, ShellError, Signature, Span, SyntaxShape, Type,
|
|
Value,
|
|
};
|
|
|
|
use polars_ops::pivot::pivot;
|
|
|
|
use crate::{
|
|
dataframe::values::utils::convert_columns_string,
|
|
values::{CustomValueSupport, PolarsPluginObject},
|
|
Cacheable, PolarsPlugin,
|
|
};
|
|
|
|
use super::super::values::NuDataFrame;
|
|
|
|
#[derive(Clone)]
|
|
pub struct PivotDF;
|
|
|
|
impl PluginCommand for PivotDF {
|
|
type Plugin = PolarsPlugin;
|
|
|
|
fn name(&self) -> &str {
|
|
"polars pivot"
|
|
}
|
|
|
|
fn usage(&self) -> &str {
|
|
"Pivot a DataFrame from wide to long format."
|
|
}
|
|
|
|
fn signature(&self) -> Signature {
|
|
Signature::build(self.name())
|
|
.required_named(
|
|
"on",
|
|
SyntaxShape::List(Box::new(SyntaxShape::String)),
|
|
"column names for pivoting",
|
|
Some('o'),
|
|
)
|
|
.required_named(
|
|
"index",
|
|
SyntaxShape::List(Box::new(SyntaxShape::String)),
|
|
"column names for indexes",
|
|
Some('i'),
|
|
)
|
|
.required_named(
|
|
"values",
|
|
SyntaxShape::List(Box::new(SyntaxShape::String)),
|
|
"column names used as value columns",
|
|
Some('v'),
|
|
)
|
|
.input_output_type(
|
|
Type::Custom("dataframe".into()),
|
|
Type::Custom("dataframe".into()),
|
|
)
|
|
.switch(
|
|
"streamable",
|
|
"Whether or not to use the polars streaming engine. Only valid for lazy dataframes",
|
|
Some('s'),
|
|
)
|
|
.category(Category::Custom("dataframe".into()))
|
|
}
|
|
|
|
fn examples(&self) -> Vec<Example> {
|
|
vec![]
|
|
}
|
|
|
|
fn run(
|
|
&self,
|
|
plugin: &Self::Plugin,
|
|
engine: &EngineInterface,
|
|
call: &EvaluatedCall,
|
|
input: PipelineData,
|
|
) -> Result<PipelineData, LabeledError> {
|
|
match PolarsPluginObject::try_from_pipeline(plugin, input, call.head)? {
|
|
PolarsPluginObject::NuDataFrame(df) => command_eager(plugin, engine, call, df),
|
|
PolarsPluginObject::NuLazyFrame(lazy) => {
|
|
command_eager(plugin, engine, call, lazy.collect(call.head)?)
|
|
}
|
|
_ => Err(ShellError::GenericError {
|
|
error: "Must be a dataframe or lazy dataframe".into(),
|
|
msg: "".into(),
|
|
span: Some(call.head),
|
|
help: None,
|
|
inner: vec![],
|
|
}),
|
|
}
|
|
.map_err(LabeledError::from)
|
|
}
|
|
}
|
|
|
|
fn command_eager(
|
|
plugin: &PolarsPlugin,
|
|
engine: &EngineInterface,
|
|
call: &EvaluatedCall,
|
|
df: NuDataFrame,
|
|
) -> Result<PipelineData, ShellError> {
|
|
let on_col: Vec<Value> = call.get_flag("on")?.expect("required value");
|
|
let index_col: Vec<Value> = call.get_flag("index")?.expect("required value");
|
|
let val_col: Vec<Value> = call.get_flag("values")?.expect("required value");
|
|
|
|
let (on_col_string, id_col_span) = convert_columns_string(on_col, call.head)?;
|
|
let (index_col_string, index_col_span) = convert_columns_string(index_col, call.head)?;
|
|
let (val_col_string, val_col_span) = convert_columns_string(val_col, call.head)?;
|
|
|
|
check_column_datatypes(df.as_ref(), &on_col_string, id_col_span)?;
|
|
check_column_datatypes(df.as_ref(), &index_col_string, index_col_span)?;
|
|
check_column_datatypes(df.as_ref(), &val_col_string, val_col_span)?;
|
|
|
|
let polars_df = df.to_polars();
|
|
// todo add other args
|
|
let pivoted = pivot(
|
|
&polars_df,
|
|
&on_col_string,
|
|
Some(&index_col_string),
|
|
Some(&val_col_string),
|
|
false,
|
|
None,
|
|
None,
|
|
)
|
|
.map_err(|e| ShellError::GenericError {
|
|
error: format!("Pivot error: {e}"),
|
|
msg: "".into(),
|
|
span: Some(call.head),
|
|
help: None,
|
|
inner: vec![],
|
|
})?;
|
|
|
|
let res = NuDataFrame::new(false, pivoted);
|
|
res.to_pipeline_data(plugin, engine, call.head)
|
|
}
|
|
|
|
fn check_column_datatypes<T: AsRef<str>>(
|
|
df: &polars::prelude::DataFrame,
|
|
cols: &[T],
|
|
col_span: Span,
|
|
) -> Result<(), ShellError> {
|
|
if cols.is_empty() {
|
|
return Err(ShellError::GenericError {
|
|
error: "Merge error".into(),
|
|
msg: "empty column list".into(),
|
|
span: Some(col_span),
|
|
help: None,
|
|
inner: vec![],
|
|
});
|
|
}
|
|
|
|
// Checking if they are same type
|
|
if cols.len() > 1 {
|
|
for w in cols.windows(2) {
|
|
let l_series = df
|
|
.column(w[0].as_ref())
|
|
.map_err(|e| ShellError::GenericError {
|
|
error: "Error selecting columns".into(),
|
|
msg: e.to_string(),
|
|
span: Some(col_span),
|
|
help: None,
|
|
inner: vec![],
|
|
})?;
|
|
|
|
let r_series = df
|
|
.column(w[1].as_ref())
|
|
.map_err(|e| ShellError::GenericError {
|
|
error: "Error selecting columns".into(),
|
|
msg: e.to_string(),
|
|
span: Some(col_span),
|
|
help: None,
|
|
inner: vec![],
|
|
})?;
|
|
|
|
if l_series.dtype() != r_series.dtype() {
|
|
return Err(ShellError::GenericError {
|
|
error: "Merge error".into(),
|
|
msg: "found different column types in list".into(),
|
|
span: Some(col_span),
|
|
help: Some(format!(
|
|
"datatypes {} and {} are incompatible",
|
|
l_series.dtype(),
|
|
r_series.dtype()
|
|
)),
|
|
inner: vec![],
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod test {
|
|
use crate::test::test_polars_plugin_command;
|
|
|
|
use super::*;
|
|
|
|
#[test]
|
|
fn test_examples() -> Result<(), ShellError> {
|
|
test_polars_plugin_command(&PivotDF)
|
|
}
|
|
}
|