nushell/crates/nu-cmd-dataframe/src/dataframe/eager/take.rs
JT 1e3e034021
Spanned Value step 1: span all value cases (#10042)
# Description

This doesn't really do much that the user could see, but it helps get us
ready to do the steps of the refactor to split the span off of Value, so
that values can be spanless. This allows us to have top-level values
that can hold both a Value and a Span, without requiring that all values
have them.

We expect to see significant memory reduction by removing so many
unnecessary spans from values. For example, a table of 100,000 rows and
5 columns would have a savings of ~8megs in just spans that are almost
always duplicated.

# User-Facing Changes

Nothing yet

# Tests + Formatting
<!--
Don't forget to add tests that cover your changes.

Make sure you've run and fixed any issues with these commands:

- `cargo fmt --all -- --check` to check standard code formatting (`cargo
fmt --all` applies these changes)
- `cargo clippy --workspace -- -D warnings -D clippy::unwrap_used -A
clippy::needless_collect -A clippy::result_large_err` to check that
you're using the standard code style
- `cargo test --workspace` to check that all tests pass
- `cargo run -- -c "use std testing; testing run-tests --path
crates/nu-std"` to run the tests for the standard library

> **Note**
> from `nushell` you can also use the `toolkit` as follows
> ```bash
> use toolkit.nu # or use an `env_change` hook to activate it
automatically
> toolkit check pr
> ```
-->

# After Submitting
<!-- If your PR had any user-facing changes, update [the
documentation](https://github.com/nushell/nushell.github.io) after the
PR is merged, if necessary. This will help us keep the docs up to date.
-->
2023-08-25 08:48:05 +12:00

156 lines
4.7 KiB
Rust

use nu_engine::CallExt;
use nu_protocol::{
ast::Call,
engine::{Command, EngineState, Stack},
Category, Example, PipelineData, ShellError, Signature, Span, SyntaxShape, Type, Value,
};
use polars::prelude::DataType;
use crate::dataframe::values::Column;
use super::super::values::NuDataFrame;
#[derive(Clone)]
pub struct TakeDF;
impl Command for TakeDF {
fn name(&self) -> &str {
"dfr take"
}
fn usage(&self) -> &str {
"Creates new dataframe using the given indices."
}
fn signature(&self) -> Signature {
Signature::build(self.name())
.required(
"indices",
SyntaxShape::Any,
"list of indices used to take data",
)
.input_output_type(
Type::Custom("dataframe".into()),
Type::Custom("dataframe".into()),
)
.category(Category::Custom("dataframe".into()))
}
fn examples(&self) -> Vec<Example> {
vec![
Example {
description: "Takes selected rows from dataframe",
example: r#"let df = ([[a b]; [4 1] [5 2] [4 3]] | dfr into-df);
let indices = ([0 2] | dfr into-df);
$df | dfr take $indices"#,
result: Some(
NuDataFrame::try_from_columns(vec![
Column::new(
"a".to_string(),
vec![Value::test_int(4), Value::test_int(4)],
),
Column::new(
"b".to_string(),
vec![Value::test_int(1), Value::test_int(3)],
),
])
.expect("simple df for test should not fail")
.into_value(Span::test_data()),
),
},
Example {
description: "Takes selected rows from series",
example: r#"let series = ([4 1 5 2 4 3] | dfr into-df);
let indices = ([0 2] | dfr into-df);
$series | dfr take $indices"#,
result: Some(
NuDataFrame::try_from_columns(vec![Column::new(
"0".to_string(),
vec![Value::test_int(4), Value::test_int(5)],
)])
.expect("simple df for test should not fail")
.into_value(Span::test_data()),
),
},
]
}
fn run(
&self,
engine_state: &EngineState,
stack: &mut Stack,
call: &Call,
input: PipelineData,
) -> Result<PipelineData, ShellError> {
command(engine_state, stack, call, input)
}
}
fn command(
engine_state: &EngineState,
stack: &mut Stack,
call: &Call,
input: PipelineData,
) -> Result<PipelineData, ShellError> {
let index_value: Value = call.req(engine_state, stack, 0)?;
let index_span = index_value.span();
let index = NuDataFrame::try_from_value(index_value)?.as_series(index_span)?;
let casted = match index.dtype() {
DataType::UInt32 | DataType::UInt64 | DataType::Int32 | DataType::Int64 => {
index.cast(&DataType::UInt32).map_err(|e| {
ShellError::GenericError(
"Error casting index list".into(),
e.to_string(),
Some(index_span),
None,
Vec::new(),
)
})
}
_ => Err(ShellError::GenericError(
"Incorrect type".into(),
"Series with incorrect type".into(),
Some(call.head),
Some("Consider using a Series with type int type".into()),
Vec::new(),
)),
}?;
let indices = casted.u32().map_err(|e| {
ShellError::GenericError(
"Error casting index list".into(),
e.to_string(),
Some(index_span),
None,
Vec::new(),
)
})?;
NuDataFrame::try_from_pipeline(input, call.head).and_then(|df| {
df.as_ref()
.take(indices)
.map_err(|e| {
ShellError::GenericError(
"Error taking values".into(),
e.to_string(),
Some(call.head),
None,
Vec::new(),
)
})
.map(|df| PipelineData::Value(NuDataFrame::dataframe_into_value(df, call.head), None))
})
}
#[cfg(test)]
mod test {
use super::super::super::test_dataframe::test_dataframe;
use super::*;
#[test]
fn test_examples() {
test_dataframe(vec![Box::new(TakeDF {})])
}
}