This PR reverts https://github.com/nushell/nushell/pull/9391 We try not to revert PRs like this, though after discussion with the Nushell team, we decided to revert this one. The main reason is that Nushell, as a codebase, isn't ready for these kinds of optimisations. It's in the part of the development cycle where our main focus should be on improving the algorithms inside of Nushell itself. Once we have matured our algorithms, then we can look for opportunities to switch out technologies we're using for alternate forms. Much of Nushell still has lots of opportunities for tuning the codebase, paying down technical debt, and making the codebase generally cleaner and more robust. This should be the focus. Performance improvements should flow out of that work. Said another, optimisation that isn't part of tuning the codebase is premature at this stage. We need to focus on doing the hard work of making the engine, parser, etc better. # User-Facing Changes Reverts the HashMap -> ahash change. cc @FilipAndersson245
312 lines
11 KiB
Rust
312 lines
11 KiB
Rust
use super::hashable_value::HashableValue;
|
|
use itertools::Itertools;
|
|
use nu_engine::CallExt;
|
|
use nu_protocol::ast::Call;
|
|
use nu_protocol::engine::{Command, EngineState, Stack};
|
|
use nu_protocol::{
|
|
Example, IntoPipelineData, PipelineData, ShellError, Signature, Span, Spanned, SyntaxShape,
|
|
Type, Value,
|
|
};
|
|
use std::collections::HashMap;
|
|
use std::iter;
|
|
|
|
#[derive(Clone)]
|
|
pub struct Histogram;
|
|
|
|
enum PercentageCalcMethod {
|
|
Normalize,
|
|
Relative,
|
|
}
|
|
|
|
impl Command for Histogram {
|
|
fn name(&self) -> &str {
|
|
"histogram"
|
|
}
|
|
|
|
fn signature(&self) -> Signature {
|
|
Signature::build("histogram")
|
|
.input_output_types(vec![(Type::List(Box::new(Type::Any)), Type::Table(vec![])),])
|
|
.optional("column-name", SyntaxShape::String, "column name to calc frequency, no need to provide if input is just a list")
|
|
.optional("frequency-column-name", SyntaxShape::String, "histogram's frequency column, default to be frequency column output")
|
|
.named("percentage-type", SyntaxShape::String, "percentage calculate method, can be 'normalize' or 'relative', in 'normalize', defaults to be 'normalize'", Some('t'))
|
|
}
|
|
|
|
fn usage(&self) -> &str {
|
|
"Creates a new table with a histogram based on the column name passed in."
|
|
}
|
|
|
|
fn examples(&self) -> Vec<Example> {
|
|
vec![
|
|
Example {
|
|
description: "Compute a histogram of file types",
|
|
example: "ls | histogram type",
|
|
result: None,
|
|
},
|
|
Example {
|
|
description:
|
|
"Compute a histogram for the types of files, with frequency column named freq",
|
|
example: "ls | histogram type freq",
|
|
result: None,
|
|
},
|
|
Example {
|
|
description: "Compute a histogram for a list of numbers",
|
|
example: "[1 2 1] | histogram",
|
|
result: Some(Value::List {
|
|
vals: vec![Value::Record {
|
|
cols: vec!["value".to_string(), "count".to_string(), "quantile".to_string(), "percentage".to_string(), "frequency".to_string()],
|
|
vals: vec![
|
|
Value::test_int(1),
|
|
Value::test_int(2),
|
|
Value::test_float(0.6666666666666666),
|
|
Value::test_string("66.67%"),
|
|
Value::test_string("******************************************************************"),
|
|
],
|
|
span: Span::test_data(),
|
|
},
|
|
Value::Record {
|
|
cols: vec!["value".to_string(), "count".to_string(), "quantile".to_string(), "percentage".to_string(), "frequency".to_string()],
|
|
vals: vec![
|
|
Value::test_int(2),
|
|
Value::test_int(1),
|
|
Value::test_float(0.3333333333333333),
|
|
Value::test_string("33.33%"),
|
|
Value::test_string("*********************************"),
|
|
],
|
|
span: Span::test_data(),
|
|
}],
|
|
span: Span::test_data(),
|
|
}
|
|
),
|
|
},
|
|
Example {
|
|
description: "Compute a histogram for a list of numbers, and percentage is based on the maximum value",
|
|
example: "[1 2 3 1 1 1 2 2 1 1] | histogram --percentage-type relative",
|
|
result: None,
|
|
}
|
|
]
|
|
}
|
|
|
|
fn run(
|
|
&self,
|
|
engine_state: &EngineState,
|
|
stack: &mut Stack,
|
|
call: &Call,
|
|
input: PipelineData,
|
|
) -> Result<PipelineData, ShellError> {
|
|
// input check.
|
|
let column_name: Option<Spanned<String>> = call.opt(engine_state, stack, 0)?;
|
|
let frequency_name_arg = call.opt::<Spanned<String>>(engine_state, stack, 1)?;
|
|
let frequency_column_name = match frequency_name_arg {
|
|
Some(inner) => {
|
|
let forbidden_column_names = ["value", "count", "quantile", "percentage"];
|
|
if forbidden_column_names.contains(&inner.item.as_str()) {
|
|
return Err(ShellError::TypeMismatch {
|
|
err_message: format!(
|
|
"frequency-column-name can't be {}",
|
|
forbidden_column_names
|
|
.iter()
|
|
.map(|val| format!("'{}'", val))
|
|
.collect::<Vec<_>>()
|
|
.join(", ")
|
|
),
|
|
span: inner.span,
|
|
});
|
|
}
|
|
inner.item
|
|
}
|
|
None => "frequency".to_string(),
|
|
};
|
|
|
|
let calc_method: Option<Spanned<String>> =
|
|
call.get_flag(engine_state, stack, "percentage-type")?;
|
|
let calc_method = match calc_method {
|
|
None => PercentageCalcMethod::Normalize,
|
|
Some(inner) => match inner.item.as_str() {
|
|
"normalize" => PercentageCalcMethod::Normalize,
|
|
"relative" => PercentageCalcMethod::Relative,
|
|
_ => {
|
|
return Err(ShellError::TypeMismatch {
|
|
err_message: "calc method can only be 'normalize' or 'relative'"
|
|
.to_string(),
|
|
span: inner.span,
|
|
})
|
|
}
|
|
},
|
|
};
|
|
|
|
let span = call.head;
|
|
let data_as_value = input.into_value(span);
|
|
// `input` is not a list, here we can return an error.
|
|
run_histogram(
|
|
data_as_value.as_list()?.to_vec(),
|
|
column_name,
|
|
frequency_column_name,
|
|
calc_method,
|
|
span,
|
|
// Note that as_list() filters out Value::Error here.
|
|
data_as_value.expect_span(),
|
|
)
|
|
}
|
|
}
|
|
|
|
fn run_histogram(
|
|
values: Vec<Value>,
|
|
column_name: Option<Spanned<String>>,
|
|
freq_column: String,
|
|
calc_method: PercentageCalcMethod,
|
|
head_span: Span,
|
|
list_span: Span,
|
|
) -> Result<PipelineData, ShellError> {
|
|
let mut inputs = vec![];
|
|
// convert from inputs to hashable values.
|
|
match column_name {
|
|
None => {
|
|
// some invalid input scenario needs to handle:
|
|
// Expect input is a list of hashable value, if one value is not hashable, throw out error.
|
|
for v in values {
|
|
match v {
|
|
// Propagate existing errors.
|
|
Value::Error { error } => return Err(*error),
|
|
_ => {
|
|
let t = v.get_type();
|
|
let span = v.expect_span();
|
|
inputs.push(HashableValue::from_value(v, head_span).map_err(|_| {
|
|
ShellError::UnsupportedInput(
|
|
"Since --column-name was not provided, only lists of hashable values are supported.".to_string(),
|
|
format!(
|
|
"input type: {t:?}"
|
|
),
|
|
head_span,
|
|
span,
|
|
)
|
|
})?)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
Some(ref col) => {
|
|
// some invalid input scenario needs to handle:
|
|
// * item in `input` is not a record, just skip it.
|
|
// * a record doesn't contain specific column, just skip it.
|
|
// * all records don't contain specific column, throw out error, indicate at least one row should contains specific column.
|
|
// * a record contain a value which can't be hashed, skip it.
|
|
let col_name = &col.item;
|
|
for v in values {
|
|
match v {
|
|
// parse record, and fill valid value to actual input.
|
|
Value::Record { cols, vals, .. } => {
|
|
for (c, v) in iter::zip(cols, vals) {
|
|
if &c == col_name {
|
|
if let Ok(v) = HashableValue::from_value(v, head_span) {
|
|
inputs.push(v);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Propagate existing errors.
|
|
Value::Error { error } => return Err(*error),
|
|
_ => continue,
|
|
}
|
|
}
|
|
|
|
if inputs.is_empty() {
|
|
return Err(ShellError::CantFindColumn {
|
|
col_name: col_name.clone(),
|
|
span: head_span,
|
|
src_span: list_span,
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
let value_column_name = column_name
|
|
.map(|x| x.item)
|
|
.unwrap_or_else(|| "value".to_string());
|
|
Ok(histogram_impl(
|
|
inputs,
|
|
&value_column_name,
|
|
calc_method,
|
|
&freq_column,
|
|
head_span,
|
|
))
|
|
}
|
|
|
|
fn histogram_impl(
|
|
inputs: Vec<HashableValue>,
|
|
value_column_name: &str,
|
|
calc_method: PercentageCalcMethod,
|
|
freq_column: &str,
|
|
span: Span,
|
|
) -> PipelineData {
|
|
// here we can make sure that inputs is not empty, and every elements
|
|
// is a simple val and ok to make count.
|
|
let mut counter = HashMap::new();
|
|
let mut max_cnt = 0;
|
|
let total_cnt = inputs.len();
|
|
for i in inputs {
|
|
let new_cnt = *counter.get(&i).unwrap_or(&0) + 1;
|
|
counter.insert(i, new_cnt);
|
|
if new_cnt > max_cnt {
|
|
max_cnt = new_cnt;
|
|
}
|
|
}
|
|
|
|
let mut result = vec![];
|
|
let result_cols = vec![
|
|
value_column_name.to_string(),
|
|
"count".to_string(),
|
|
"quantile".to_string(),
|
|
"percentage".to_string(),
|
|
freq_column.to_string(),
|
|
];
|
|
const MAX_FREQ_COUNT: f64 = 100.0;
|
|
for (val, count) in counter.into_iter().sorted() {
|
|
let quantile = match calc_method {
|
|
PercentageCalcMethod::Normalize => count as f64 / total_cnt as f64,
|
|
PercentageCalcMethod::Relative => count as f64 / max_cnt as f64,
|
|
};
|
|
|
|
let percentage = format!("{:.2}%", quantile * 100_f64);
|
|
let freq = "*".repeat((MAX_FREQ_COUNT * quantile).floor() as usize);
|
|
|
|
result.push((
|
|
count, // attach count first for easily sorting.
|
|
Value::Record {
|
|
cols: result_cols.clone(),
|
|
vals: vec![
|
|
val.into_value(),
|
|
Value::Int { val: count, span },
|
|
Value::Float {
|
|
val: quantile,
|
|
span,
|
|
},
|
|
Value::String {
|
|
val: percentage,
|
|
span,
|
|
},
|
|
Value::String { val: freq, span },
|
|
],
|
|
span,
|
|
},
|
|
));
|
|
}
|
|
result.sort_by(|a, b| b.0.cmp(&a.0));
|
|
Value::List {
|
|
vals: result.into_iter().map(|x| x.1).collect(),
|
|
span,
|
|
}
|
|
.into_pipeline_data()
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
|
|
#[test]
|
|
fn test_examples() {
|
|
use crate::test_examples;
|
|
|
|
test_examples(Histogram)
|
|
}
|
|
}
|