nushell/crates/nu-command/src/dataframe/eager/summary.rs

272 lines
8.9 KiB
Rust

use super::super::values::{Column, NuDataFrame};
use nu_engine::CallExt;
use nu_protocol::{
ast::Call,
engine::{Command, EngineState, Stack},
Category, Example, PipelineData, ShellError, Signature, Span, SyntaxShape, Type, Value,
};
use polars::{
chunked_array::ChunkedArray,
prelude::{
AnyValue, DataFrame, DataType, Float64Type, IntoSeries, NewChunkedArray,
QuantileInterpolOptions, Series, Utf8Type,
},
};
#[derive(Clone)]
pub struct Summary;
impl Command for Summary {
fn name(&self) -> &str {
"summary"
}
fn usage(&self) -> &str {
"For a dataframe, produces descriptive statistics (summary statistics) for its numeric columns."
}
fn signature(&self) -> Signature {
Signature::build(self.name())
.category(Category::Custom("dataframe".into()))
.input_type(Type::Custom("dataframe".into()))
.output_type(Type::Custom("dataframe".into()))
.named(
"quantiles",
SyntaxShape::Table,
"provide optional quantiles",
Some('q'),
)
}
fn examples(&self) -> Vec<Example> {
vec![Example {
description: "list dataframe descriptives",
example: "[[a b]; [1 1] [1 1]] | into df | summary",
result: Some(
NuDataFrame::try_from_columns(vec![
Column::new(
"descriptor".to_string(),
vec![
Value::test_string("count"),
Value::test_string("sum"),
Value::test_string("mean"),
Value::test_string("median"),
Value::test_string("std"),
Value::test_string("min"),
Value::test_string("25%"),
Value::test_string("50%"),
Value::test_string("75%"),
Value::test_string("max"),
],
),
Column::new(
"a (i64)".to_string(),
vec![
Value::test_float(2.0),
Value::test_float(2.0),
Value::test_float(1.0),
Value::test_float(1.0),
Value::test_float(0.0),
Value::test_float(1.0),
Value::test_float(1.0),
Value::test_float(1.0),
Value::test_float(1.0),
Value::test_float(1.0),
],
),
Column::new(
"b (i64)".to_string(),
vec![
Value::test_float(2.0),
Value::test_float(2.0),
Value::test_float(1.0),
Value::test_float(1.0),
Value::test_float(0.0),
Value::test_float(1.0),
Value::test_float(1.0),
Value::test_float(1.0),
Value::test_float(1.0),
Value::test_float(1.0),
],
),
])
.expect("simple df for test should not fail")
.into_value(Span::test_data()),
),
}]
}
fn run(
&self,
engine_state: &EngineState,
stack: &mut Stack,
call: &Call,
input: PipelineData,
) -> Result<PipelineData, ShellError> {
command(engine_state, stack, call, input)
}
}
fn command(
engine_state: &EngineState,
stack: &mut Stack,
call: &Call,
input: PipelineData,
) -> Result<PipelineData, ShellError> {
let quantiles: Option<Vec<Value>> = call.get_flag(engine_state, stack, "quantiles")?;
let quantiles = quantiles.map(|values| {
values
.iter()
.map(|value| match value {
Value::Float { val, span } => {
if (&0.0..=&1.0).contains(&val) {
Ok(*val)
} else {
Err(ShellError::GenericError(
"Incorrect value for quantile".to_string(),
"value should be between 0 and 1".to_string(),
Some(*span),
None,
Vec::new(),
))
}
}
_ => match value.span() {
Ok(span) => Err(ShellError::GenericError(
"Incorrect value for quantile".to_string(),
"value should be a float".to_string(),
Some(span),
None,
Vec::new(),
)),
Err(e) => Err(e),
},
})
.collect::<Result<Vec<f64>, ShellError>>()
});
let quantiles = match quantiles {
Some(quantiles) => quantiles?,
None => vec![0.25, 0.50, 0.75],
};
let mut quantiles_labels = quantiles
.iter()
.map(|q| Some(format!("{}%", q * 100.0)))
.collect::<Vec<Option<String>>>();
let mut labels = vec![
Some("count".to_string()),
Some("sum".to_string()),
Some("mean".to_string()),
Some("median".to_string()),
Some("std".to_string()),
Some("min".to_string()),
];
labels.append(&mut quantiles_labels);
labels.push(Some("max".to_string()));
let df = NuDataFrame::try_from_pipeline(input, call.head)?;
let names = ChunkedArray::<Utf8Type>::from_slice_options("descriptor", &labels).into_series();
let head = std::iter::once(names);
let tail = df
.as_ref()
.get_columns()
.iter()
.filter(|col| col.dtype() != &DataType::Object("object"))
.map(|col| {
let count = col.len() as f64;
let sum = col
.sum_as_series()
.cast(&DataType::Float64)
.ok()
.and_then(|ca| match ca.get(0) {
AnyValue::Float64(v) => Some(v),
_ => None,
});
let mean = match col.mean_as_series().get(0) {
AnyValue::Float64(v) => Some(v),
_ => None,
};
let median = match col.median_as_series().get(0) {
AnyValue::Float64(v) => Some(v),
_ => None,
};
let std = match col.std_as_series(0).get(0) {
AnyValue::Float64(v) => Some(v),
_ => None,
};
let min = col
.min_as_series()
.cast(&DataType::Float64)
.ok()
.and_then(|ca| match ca.get(0) {
AnyValue::Float64(v) => Some(v),
_ => None,
});
let mut quantiles = quantiles
.clone()
.into_iter()
.map(|q| {
col.quantile_as_series(q, QuantileInterpolOptions::default())
.ok()
.and_then(|ca| ca.cast(&DataType::Float64).ok())
.and_then(|ca| match ca.get(0) {
AnyValue::Float64(v) => Some(v),
_ => None,
})
})
.collect::<Vec<Option<f64>>>();
let max = col
.max_as_series()
.cast(&DataType::Float64)
.ok()
.and_then(|ca| match ca.get(0) {
AnyValue::Float64(v) => Some(v),
_ => None,
});
let mut descriptors = vec![Some(count), sum, mean, median, std, min];
descriptors.append(&mut quantiles);
descriptors.push(max);
let name = format!("{} ({})", col.name(), col.dtype());
ChunkedArray::<Float64Type>::from_slice_options(&name, &descriptors).into_series()
});
let res = head.chain(tail).collect::<Vec<Series>>();
DataFrame::new(res)
.map_err(|e| {
ShellError::GenericError(
"Dataframe Error".into(),
e.to_string(),
Some(call.head),
None,
Vec::new(),
)
})
.map(|df| PipelineData::Value(NuDataFrame::dataframe_into_value(df, call.head), None))
}
#[cfg(test)]
mod test {
use super::super::super::test_dataframe::test_dataframe;
use super::*;
#[test]
fn test_examples() {
test_dataframe(vec![Box::new(Summary {})])
}
}